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COVID‑19 lockdown and its latency 
in Northern Italy: seismic evidence 
and socio‑economic interpretation
Davide Piccinini1*, Carlo Giunchi1, Marco Olivieri2, Federico Frattini3, Matteo Di Giovanni1, 
Giorgio Prodi3 & Claudio Chiarabba4

The Italian Government has decreed a series of progressive restrictions to delay the COVID-19 
pandemic diffusion in Italy since March 10, 2020, including limitation in individual mobility and the 
closure of social, cultural, economic and industrial activities. Here we show the lockdown effect in 
Northern Italy, the COVID-19 most affected area, as revealed by noise variation at seismic stations. 
The reaction to lockdown was slow and not homogeneous with spots of negligible noise reduction, 
especially in the first week. A fresh interpretation of seismic noise variations in terms of socio-
economic indicators sheds new light on the lockdown efficacy pointing to the causes of such delay: 
the noise reduction is significant where non strategic activities prevails, while it is small or negligible 
where dense population and strategic activities are present. These results are crucial for the a 
posteriori interpretation of the pandemic diffusion and the efficacy of differently targeted political 
actions.

The extreme effort of the Italian Government to prevent or delay the diffusion of the COVID-19 resulted in 
the lockdown of social, cultural, and part of economic and industrial activities over the entire country start-
ing from March 10, 2020 (https​://www.gazze​ttauf​fi cia​le.it/eli/gu/2020/04/11/97/sg/pdf hereinafter DPCM-1) 
imposing social distancing to the entire population. A second decree, on March 22, extended the closure to all 
the non-strategic economic activities while few remained fully operative (https​://www.gazze​ttauf​fi cia​le.it/eli/
gu/2020/03/22/76/sg/pdf hereinafter DPCM-2). Besides social and economic effects and extensive daily life 
disruption (any unnecessary individual circulation was prohibited), restrictions also determined a decrease in 
the seismic ambient noise due to the integrated effects of natural (ocean waves and wind) and anthropogenic 
sources1–3.

As seismic monitoring networks operate continuously, seismic data can be easily used to track changes in 
the ambient noise. This approach is effective in providing insights on the variation of natural and anthropo-
genic noise sources4, in seasonality of waves and winds5, and on the effect of disruptive events like the Super 
Typhoon Ioke6. The observation of the anthropogenic noise at high frequency (F > 1 Hz) dates back to the 60′s7 
and, especially in regions with high anthropic activity and poor rock characterization like a large portion of our 
study area (i.e. the alluvial basin of the Po Plain), ambient noise is high and masks low magnitude seismicity8. 
Anthropogenic sources are mainly associated with road and rail traffic, cultural and industrial activity causing 
a characteristic pattern of two superimposed fluctuations with daily and weekly periodicity [3, and references 
therein]. This effect is modulated at each site according to the ratio between anthropogenic and natural noise 
and to the source-receiver distance and confirmed by the observed correlation between economic conditions 
and noise level at global scale9.

The general trend of ambient noise reduction after the lockdown has been first described for Shillong (India)10, 
for Northern Italy by Poli et al.11 and, at global scale, by Lecocq et al.12. In this work, we focus with higher detail 
on the regional-scale transition across the March 10 lockdown (DPCM-1), with a combined analysis of time-
varying seismic ambient noise and static socio-economic dimensions, such as population density and compo-
sition of economic activities (strategic and non-strategic industries). Moreover, with respect to10–12, we tackle 
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the causes for the observed spatial and temporal fluctuations in noise reduction with the goal of understanding 
how they originated.

The seismic dataset for Northern Italy is based on the recordings of 78 seismic stations (Fig. 1) during 
6 weeks across March 10 (timeline in Fig. 2 and details in the “Material and methods” section). The two weeks 
before the lockdown (Feb 24—March 7, 2020) are used as a baseline (REFWs), while the four subsequent weeks 
(March 8-April 5, 2020) will be referred as Wj, with j = 1,4. We will focus on the frequency band for 5 to 20 Hz 
and retrieve, for each site, a time series of the displacement noise amplitude. This choice, discussed in details in 
“Methods” section, stems from the need of representing the ambient noise variations with a unit measure readily 
understandable by a broad scientific community.

Results
We first show noise amplitude time series, expressed as ground displacement, for some representative sites to 
focus on how and when noise level changed over time. When available, these are also compared with traffic data 
from local municipalities or other sources and with NO2 pollutant from local environmental protection agencies. 
We remark here that the quantitative correlation between pollutants, vehicular traffic and noise would require 
a dedicated work also accounting for the changes of meteorological conditions over time. The availability of 
further data characterizing the “recovery” following the lockdown conclusion would make such a study even 
more interesting.

The noise recording of the seismic station ST.DOSS is the first example considered (Fig. 3a). This station is 
sited in the Alpe Cimbra (Folgaria, see Fig. 1), one of the most popular ski districts in Italy. As a consequence of 

Figure 1.   Map of the Italian regions targeted by this work. Thin black lines are regional borders. The bottom 
left panel shows where these regions are located in Western Europe. Blue-filled triangles mark the location of 
the stations discussed in the “Results” section. Empty triangles mark the location of all the seismic stations 
considered in this work. Green filled triangles mark those sites excluded from the socio-economic analysis. 
Red-filled circles mark the location of regional capital cities. PAT and FVG stand for Provincia Autonoma di 
Trento and Friuli-Venezia Giulia, respectively. Gray lines marks highways (solid) and railways (dashed). Figure 
created using Matplotlib Basemap Toolkit41. Bottom right frame: COVID-19 spatial spread as confirmed case/
population in Italy for March 10, 2020. Figure modified after Gatto et al.(18: figure 1, used under CC BY 4.0 https​
://creat​iveco​mmons​.org/licen​ses/by/4.0/).

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


3

Vol.:(0123456789)

Scientific Reports |        (2020) 10:16487  | https://doi.org/10.1038/s41598-020-73102-3

www.nature.com/scientificreports/

the lockdown, the ski slopes, lifts, cableways, mountain lodges and restaurants have been closed and, as clearly 
recognizable from Fig. 3a, the noise level drop is large, sudden and persistent over the weeks, showing very small 
daily and weekly fluctuations. The computed percent noise variation (PNV, Eq. 2) is equal to − 50% during W1, to 
− 64% during W2, to − 66% for the following W3 and finally it reaches − 71% during W4. This site represents the 
simplest and more effective case of quieting, since here the source of anthropogenic noise is just one ski resort 
and the on–off effect is perfectly represented since the few activities were closed simultaneously. Similar features 
are visible in other remote sites in the proximity of alpine ski resorts. 

The second and opposite case is IV.MILN (Fig. 3b), sited in the centre of Milano, the most densely populated 
city in Northern Italy (~ 7400 people/km2), with large commuting rates (Central station serves on average 320,000 
people per day) and with the largest public transport system in Italy (4 underground lines, 80 transit bus lines 
and 18 tramways). Although data on people mobility shows a sharp decrease since W1 (data source https​://www.
apple​.com/covid​19/mobil​ity), the noise variation is moderate over W1-W4 and PNV reaches a small − 20% in W4. 
Nonetheless, a strong reduction in the day/night fluctuation is visible (Fig. 3b) and the lockdown also affects the 
peak-to-peak amplitude of the Saturday noise level that, after DPCM-1 (black line in Fig. 3), becomes comparable 
to the noise recorded during Sunday, when large part of tertiary activities are closed. The persistency of high noise 
levels over the week can be attributed to public (and private) transport traffic, consistent with the high level of 
NO2

13, commonly considered a proxy for the rate of circulating petrol vehicles (Fig. 3c).
Topologically similar is the station IV.FIR (Fig. 3d), sited in Firenze city centre (population ~ 400,000, density 

3700 people/km2), one of the most visited tourist attraction in Italy (more than 15.8 million visitors in 2019, data 
source Città Metropolitana di Firenze, Statistica del Turismo). The average noise progressively decreases after the 
lockdown with PNV = − 11% during W1 and almost reaching − 50% during W3 and W4. This reduction is well 
explained by the sharp decrease of the urban traffic in terms of number of vehicles per hour (data source https​://
www.comun​e.fi.it/). The reduction of the average noise level is associated to a decrease of the night minimum, 
probably due to the closure of the nightlife activities in the city centre. In this case, traffic reduction reflects on 
the NO2 concentration average measured (data source https​://www.arpat​.tosca​na.it) (Fig. 3e). We also note that 
PNV is smaller than the daily traffic decrease (~ − 75%), this suggesting the presence of other persisting anthro-
pogenic sources. These examples represent different responses to the lockdown, highlighting sudden variations 
in remote places and slow and small changes in urban environments where traffic is not the exclusive source of 
anthropogenic noise.

Figure 4 shows five further seismic noise time series from sites located in different context: IV.PCN (Pia-
cenza) is located in a medium size city (population ~ 100,000); IV.ORZI is close to Orzinuovi town (population 
12,000) and sited in a densely populated neighbourhood; IV.SERM and IV.RAVA are located in a rural context, 
close to small villages. Despite the different characteristics, all these sites show similar behaviour in terms of 
PNV: an almost negligible decrease in W1 and W2 (from − 5 to 20%), that becomes visible only in W3 and W4 
with PNV equal to about − 20 and − 30% respectively. In some cases, this general decrease is accompanied by 
a limited decrease of the noise level at night (IV.PCN, IV.ORZI, Fig. 4a,b), while this does not happen at other 
sites (IV.RAVA, IV.SERM, Fig. 4c,d). A further indicator of the ongoing change is the peak-to-peak amplitude 
in the working weeks. IV.RAVA, is, among the four discussed sites, the only one showing a small decrease and 
this can be consequence of the low population density at IV.RAVA (60 people/km2 in a 2.5 km radius) that is, 
on average one order of magnitude smaller than the other three sites (IV.ORZI ~ 500 people/km2, IV.PCN ~ 900 
people/km2, IV.SERM ~ 300 people/km2). This certainly turns into a lower vehicle traffic in the area that, in 
addition to the lack of urban public transport, makes this contribution smaller compared to other sources like 
industries. Finally, at station OX.CAE (Fig. 4e), sited at the borders between Veneto and Friuli-Venezia Giulia 
regions, PNV is negligible during W1 and W2, while it became significant in W3 (− 30%). The station is close to 
a large industrial area where no strategic activities remained operating until DPCM-2.

Figure 2.   Timeline of the governmental actions and of the impact of Covid-19 in Italy. On the time axis we 
highlighted the weeks considered in this work: two before lockdown (red) and four after (blue).

https://www.apple.com/covid19/mobility
https://www.apple.com/covid19/mobility
https://www.comune.fi.it/
https://www.comune.fi.it/
https://www.arpat.toscana.it
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The general trend of ambient noise reduction after the lockdown has been presented for the Northern Italy 
area11. Here, we focus on the March 10 lockdown looking closer at spatio-temporal changes in seismic noise. To 
evaluate the lockdown effects at a regional scale and to visually support the following socio-economic analysis, 
we interpolate PNV observed at the 78 selected sites over a dense grid (see “Methods” section for details) on a 
weekly base. Figure 5 represents the colour coded PNV for W1-W4. White colour indicates an almost negligible 
variation (± 10%) with respect to REF and it also encompasses the PNV uncertainty (Eq. 3) that on average 
results ≤ 6% (see “Methods” section). During W1, the recognizable large white patches support the hypothesis of 

Figure 3.   (a, b, d) Time series of the noise amplitude (in nm) in the frequency band between 5 and 20 Hz as 
obtained from the PPSD analysis. Red horizontal lines represents the average noise level for each working week. 
Continuous black vertical line mark the lockdown date (DPCM-1) while the following dashed one refers to the 
closure of all commercial activities (DPCM-2). Light purple vertical bands highlight the weekend. In (a) in light 
gray we indicate the reference time window represented by the 2 weeks preceding the lockdown (REFWs) and 
the following four weeks (W1–W4). In (c) we show using blue and orange lines, mobility reduction and NO2 
level respectively as recorded at Milano. In (e) the number of vehicles per hour (blue line) and NO2 level (orange 
line) for Firenze are shown. Further details could be found in section “Results”.
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the absence of significant reduction probably linked to a delayed effectiveness of the lockdown. Since W2, PNV 
becomes significant in a large number of sites and this reflects in a reduced size for white area as the expected 
social distancing action take power. We can also recognize, for W3 a counterintuitive spot of increased noise in 
Veneto and Emilia-Romagna regions (Fig. 5c). This is the consequence of a strong wind perturbation that took 
place for several days14.

To quantify the lockdown reactions at different sites and the patterns revealed by noise spatial variations, we 
perform a cross-sectional analysis to understand how the effectiveness and timing of the lockdown can be related 
to local socio-economic structures. This dataset is preferred with respect to punctual and time dependent data 
like pollution or car traffic since it represents an overall picture of the different human activities and it covers 
the whole region with detail. At this stage the dataset is reduced to 76 sites since for two of them (NI.POLC and 
IV.RMS2, green triangles in Fig. 1) economic data are not available in the selected databases.

Figure 4.   Time series of the noise amplitude (in nm) in the frequency band between 5 and 20 Hz obtained 
from the PPSD analysis as for (a–c) of Fig. 3.
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PNV does not allow to capture the typical noise levels at sites that are generated by different degrees of 
anthropization. For this reason, we use Noise Variation (NVi,j) the difference between the noise level in a post-
lockdown week (Ni,j) and the REF (Eq. 1) and we consider Population (Pi) and Economic Activities (EA) as 
explanatory variable. For the latter we distinguish between Strategic and Not strategic Economic Activities 
introduced by DPCM-2 (SEAi and NEAi, respectively). We observe that seismic station location could not be 
representative of the entire municipality as, in some cases, locations are within the city centre while others are 
in remote sites within the municipal territory. For this reason, we define Pi as the population within 2.5 km 
from stations, while SEAi and NEAi are approximated as the expected number of persons employed within 
the same distance. As socio-economic data (Pi, SEAi, NEAi) do not vary over weeks, we perform four separate 
cross-sectional tests, one test for each week j after DPCM-1. Since REF varies from site to site, each regression 
(Eq. 7) also include Ni,j. as explanatory variable. See “Methods” section for additional details on measures and 
data analysis and Supporting Information for additional details on EA grouping.

Table 1 shows the results from Ordinary Least Squares (OLS) multivariate correlation test between noise 
variation and socio-economic dimensions defined by Eq. (7).

Although the estimated coefficient for Ni,j is statistically non-significant for W3 because of the wind storm 
mentioned above, the tests confirm that, on average, noise variation NVj decreases over weeks, namely from 
− 0.17 nm (W1, 95% CI: − 0.23, − 0.10) to − 0.50 nm (W4, 95% CI: − 0.64, − 0.35). Furthermore, SEAi appears 
to have restrained the lockdown effect, while noise reduction has been more pronounced where NEAi are more 
agglomerated. In other words, our analysis shows that both SEA and NEA contribute to the noise lowering, but 
SEA contributes less than average while NEA more than average. The consistency of this evidence all over W1–W4 
suggests that the limitations first introduced by DPCM-1 in W1 induced a different response between “core” EA 
(some of those identified as strategic later by DPCM-2) and other industries that chose to suspend their activity 
in consequence of a fast-decreasing demand. To give an example, one of the Italian retailer association15 claimed 
huge decline in goods demand for March 2020 (apparel and footwear − 67.4% automotive − 82.4%, furniture 
− 66.2%, and white goods and electric appliances − 54.3%.). The different contribution from the two groups of 
EA is then magnified after W3, when the separation was formally introduced by DPCM-2. When all the other 
variables are held constant, the effect of one standard-deviation increase of SEAi (~ 81,000) on NVi,j grows indeed 
from 1.75 nm in W1 (95% CI: 0.73, 2.77) to 7.21 nm in W4 (95% CI: 4.87, 9.56). On the opposite, the effect of 
one standard-deviation increase of NEAi (~ 42,000) is − 2.20 nm in W1 (95% CI: − 3.46, − 0.95) and − 8.14 nm in 
W4 (95% CI: − 11.059, − 5.23). The only uneven result is the effect estimated for one standard-deviation increase 

Figure 5.   Spatial interpolation of the percent noise variation (PNV) for the case of W1, W2, W3 and W4. In each 
panel triangles mark the position of the 78 seismic stations, each colour coded according to its corresponding 
PNV and to the selected palette shown on the right side of the figure. White colour refers to a percent variation 
between − 10% and 10% that we consider a null change to encompass the error bars. Figure created using 
Matplotlib Basemap Toolkit41.
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of Pi (~ 24,000), which is positive in W1 (0.48, 95% CI: 0.14, 0.82) and W4 (0.84, 95% CI: 0.055, 1.63), null in 
W3 (0.014, 95% CI: − 0.33, 0.35), and negative in W2 (− 0.37, 95% CI: − 0.50, − 0.25). The adj-R2 obtained from 
the ratio between the variance captured by the explanatory variables and the total variance of NVi,j shows that 
the explanatory power of the tests varies over weeks, and the highest in W2 (0.74) and W4 (0.71). Nonetheless, 
statistically significant F-statistics confirm that the set of explanatory variables is meaningful for all the four tests.

Discussion
Spatial patterns of noise variation reflect the heterogeneous landscape captured by the sparse stations, where 
many overlapping sources concur to the overall signal and qualitatively well compare with11. Among the others, 
industrial machinery, buildings and urban traffic dominate the seismic noise spectra at frequencies larger than 
1 Hz, with signal amplitudes that scale with source size and distance. In our study, we use the spectral band from 
5 to 20 Hz to preserve the full set of noise sources, even though it is not possible to discriminate between different 
active sources in each case. We notice that sites IV.MILN and IV.FIR have been also analyzed in detail in11. Despite 
the different choice for frequency band and units, visual comparison confirms the consistency of the results.

Previous studies revealed that the noise generated by human infrastructures can be clearly observed at dis-
tances larger than 10 km, nevertheless subsurface properties may significantly impact on the distance over which 
noise propagates16,17. Since the average interstation distance is around 32 km (figure S2), values at specific sites 
are indeed representative of the average noise level in a broader area around the observation point, especially 
where the density of stations is higher and the characteristics of noise are similar.

Despite the limitations discussed so far, clear patterns of noise variation following the lockdown imposed to 
prevent the COVID-19 pandemic diffusion, emerge and they appear to be consistent, on average, with a reliable 
societal response to the emergency. A general noise reduction is apparent at most sites, but a consistent drop 
(PNV < − 20%) is achieved only at W3 (Fig. 5c). This evidence is locally very heterogeneous, varying from a sharp 
decrease to a progressive lowering, a small reduction that contrasts the few cases of local increase of noise level. 
Sharp decrease is common for remote sites (type 0 in Table S1) as those ski resorts where the lockdown brought 
an immediate stop of any activity (e.g. ST.DOSS). Progressive decrease is visible in large city centres such as 
Milano or Firenze in which the PNV reaches − 22% and − 50% during W3 and W4 respectively. Furthermore, 
we could observe at spot of homogeneous noise variation in the area in which COVID-19 diffusion18 was more 
pronounced (e.g. IV.RAVA, IV.SERM, IV.PCN, IV.ORZI and IV.MILN). For these sites indeed we record a slow 
and small decrease of the seismic noise with maximum reductions in the range between − 18% (IV.RAVA) and 
− 30% (IV.PCN).

The comparison between mobility and seismic data suggests a complex relationship between them. This 
because many vehicles, especially public transport, continued to circulate. Furthermore, this discrepancy stems 
from the restriction to group and family mobility, while individuals were allowed to move alone for a restricted 
number of needs.

Sites like IV.FIR (centre of Firenze) show that noise drop is large and persistent (Fig. 3d,e) where the traffic is 
the dominant source. Conversely, in sites where the drop is low, the dominant noise component could be other 
than private traffic and people circulation. The persistent noise could be explained by the unrest of the economic 
activities, as evidenced by the cross-correlation study. The correlation between NVi,j and EA is coherent with 
the restrictions introduced by the Italian Government: the sign changes are consistent all over W1–W4 and the 
effect size is larger after W3. This suggests that some companies in non-strategic economic sectors might have 
decided to go offline before March 2215, and that the identification of SEAi is, at least in part, consistent with this 
evolution. On the other hand, the correlation between NVi,j and Pi is less clear and opens to some hypotheses 
about how people have complied with the lockdown restrictions. People may have taken some days, indeed, to 
fully adapt to the pandemic emergency and many services tightly proportioned to the population density, such 
as public transport, actually took some days to adjust their offer. Moreover, the demand for other services, such 
as food and good delivery might have further increased in W4 as evidenced by e-sales in which consumer goods 

Table 1.   Each column summarizes the results from multivariate OLS regressions of noise variation NVi,j 
against noise levels in week j (Ni,j), population (Pi), employment in strategic activities (SEAi) and non-strategic 
activities (NEAi), standardized explanatory variables (z-scores), p-value: * < 0.1, ** < 0.5, *** < 0.01. CI stands for 
confidence interval. NV

_
 is the average noise variation in week j.

NVi,1 NVi,2 NVi,3 NVi,4

NVj
_

− 0.17 (95% CI: − 0.23, 
− 0.10)***

− 0.36 (95% CI: − 0.46, 
− 0.27)***

− 0.38 (95% CI: − 0.65, 
− 0.12)***

− 0.50 (95% CI: − 0.64, 
− 0.35)***

Ni,j
− 0.25 (95% CI: − 0.34, 
− 0.16)***

− 0.37 (95% CI: − 0.50, 
− 0.25)*** 0.014 (95% CI: − 0.33, 0.35) − 0.64 (95% CI: − 0.84, 

− 0.45)***

Pi 0.48 (95% CI: 0.14, 0.82)*** − 0.49 (95% CI: − 0.99, 0.013)* 0.46 (95% CI: − 1.0024, 1.93) 0.84 (95% CI: 0.055, 1.63)**

SEAi 1.75 (95% CI: 0.73, 2.77)*** 2.39 (95% CI: 0.83, 3.96)*** 9.09 (95% CI: 4.73, 13.45)*** 7.21 (95% CI: 4.87, 9.56)***

NEAi
− 2.20 (95% CI: − 3.46, 
− 0.95)***

− 2.09 (95% CI: − 4.02, 
− 0.17)**

− 9.93 (95% CI: − 15.37, 
− 4.50)***

− 8.14 (95% CI: − 11.059, 
− 5.23)***

adj-R2 0.48 0.74 0.36 0.71

F(4,71) 18.2*** 54.95*** 11.62*** 47.25***



8

Vol:.(1234567890)

Scientific Reports |        (2020) 10:16487  | https://doi.org/10.1038/s41598-020-73102-3

www.nature.com/scientificreports/

registered a + 162% in W3 with respect to the same week in 201919. We cannot exclude, however, that people might 
have also loosened their more general compliance with restrictions after some weeks of quarantine.

Our results highlight the compliance of societal behaviour following DPCM-1 and -2 in Northern Italy, as 
emerges from this innovative approach that integrates seismic data with socio-economic analysis. We document 
that the quieting took place slowly and not homogeneously, with areas where economic activities prevails drop-
ping slower than others. Ambient noise variation is anyway not observed before March 10 in all sites.

Although a direct relation between noise variation and social distancing is not immediate, our results imply 
a delay in the change of societal attitude in the area mostly affected by COVID-19. The significant drop achieved 
lately at the end of March could have promoted decisive and beneficial effects in the infection rate restraint 
starting from mid-April.

Results from the combined analysis of seismic noise data and socio-economic markers are not only crucial 
supporting material for a posteriori interpretation of the COVID-19 pandemic diffusion especially for highly 
populated and industrial areas worldwide, but also provide further fundamentals to foresee the effectiveness of 
political actions and proactive measures against possible future spread of new pandemics.

Methods
The stations currently contributing to the seismic surveillance of Italy are more than 500, belonging to different 
networks and only partly deployed and maintained by INGV itself20–23. This implies a large heterogeneity in 
sensors, digitizers, data transmission and siting quality. To maximize the station coverage for this study, we use 
the whole set of existing stations for the northern Italy (Latitude greater than 43.5, rectangle in Fig. 1) for which 
continuous data for the entire period of this study (February 24–April 5, 2020) are available. To better encom-
pass all the possible sources of cultural and anthropogenic noise, we analyse the frequency band between 5 and 
20 Hz, which mainly characterizes the noise produced by public and private traffic and industrial activities24–27. 
Previous studies identified road traffic noise in the frequency band 3–25 Hz while a large variety of industrial 
activities affect the 2–10 Hz frequency band28. Since other sources of non-anthropic noise, such as wind, can 
be observed over a broad frequency band with large differences between sites, we decided to cut out the lower 
frequencies (F < 5 Hz) to limit the effect of non-anthropic fluctuation on data29.

From the vertical component of the seismograms recorded at each site, we computed the probabilistic power 
spectral density (PPSD) using the method of McNamara et al.30. The PPSD was calculated on 1 h-long segments 
with a 50% overlap after the instrument correction removal. Following Lecocq et al.12 we convert PPSD accel-
eration amplitudes to displacement dividing each PPSD by (2πf)2 where f is the frequency and then, using the 
Parseval’s identity, we obtain the displacement RMS value in the 5–20 Hz frequency range for each hour long 
segment. Following this approach we get a continuous time-series that covers the time span from February 24 
to April 4. After removing those few stations for which the post processing analysis evidenced anomalies (e.g. 
Figure S1), the final dataset consists of 78 time series from stations that have good quality raw data and provide 
consistent time series. Spatial distribution analysis shows an interstation distance (i.e., the average distance 
between the two closest stations) that varies between 8 and 98 km with an average of 32 km and standard devia-
tion equal to 14 km (Figure S2).

We estimate the mean noise level during each working week averaging the obtained time series over the 
Monday to Friday period for each week (Table S1). We then define a reference level REF as the average of the 
two weeks preceding the lockdown (REFWs) and finally we compute, for each week Wj, the noise variation (NV) 
and the percent noise variation (PNV) as follow:

where N ≤ is the noise level at site i in Wj, and REFi is the reference level at site i.
For the spatial interpolation, we choose the Delaunay triangulation31 because, as evidenced by Olivieri and 

Spada32 this produces the simplest network by connecting the input dataset (latitude, longitude, PNV) over the 
selected domain33. This choice reflects the idea of keeping the approach as simple as possible. We use a modi-
fied version of the original method31, implemented into the package sphinterpolate part of the Generic Mapping 
Tools34. PNV values are interpolated for each week W1-W4 by enabling tension in order to preserve local mono-
tonicity and convexity while smoothing is performed by means of global gradient.

To provide a figure for the error associated to each PNV we define �Ni,j as the standard deviation of the mean 
for the corresponding site and week. By applying error propagation rules35 we obtain:

where

Socio-economic analysis is based on data on population and employment at a municipality scale retrieved 
from Istat36.

(1)NVi,j = Ni,j − REFi

(2)PNVi,j =
Ni,j − REFi

REFi

(3)�PNVi,j =

√

�Ni,j
2 +�REFi

2

(Ni,j − REFi)
2

+
�REFi

2

REFi
2

∗ PNVi,j

(4)�REFj =

√

(�NREFW1)
2
+ (�NREFW2)

2

2
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Demographic and economic information are updated in year 2019 and 2017, respectively. Nonetheless, we 
observed that the location of the stations could not be representative of the entire municipality. Some of the sta-
tions are in the city centre, while others are located in far more remote sites. In order to characterize the degree 
of anthropization at each site, we used data from WorldPop37 and computed the total number of people living 
within a radius of 2.5 km from the stations (Pi). Under the reasonable hypothesis that economic activities are 
distributed similarly to the population, we used the ratio between the population density at 2.5 km (PD25

i) and the 
overall population density within the municipality (PDi) as a scaling factor for the number of people employed 
(EMPi

*) to obtain a proxy for SEAi and NEAi in the surroundings of the stations as follows:

We set four independent OLS multivariate correlation tests, one for each W1–W4, to fit a linear combination 
of the selected variables that best represent the distribution of NVi,j

38. More formally, the test consists in four 
cross-sectional regressions ( j = 1, 4) of the following linear equation:

where bn are the estimated coefficients and ei,j the error term. We remark that while NVi,j and Ni,j are week 
dependent, Pi, SEAi and NEAi are not. All the explanatory variables (X) enter the regression model in z-scores 
(E(X) = 0 and sd(X) = 1), so that the estimated intercept b0 is the mean of NVi,j. The other coefficients b–0 measure 
the effect of a one standard-deviation increase of X on NVi,j. Regressions have been performed with package R39.

The distinction between SEA and NEA is based on the list of sectors, part of DPCM-2, in which the Italian 
Government identified a number of economic activities (Table S3) that, observing rigorous protocols, could 
continue operating because strategic for the country. On the opposite, all the other (non-strategic) activities 
were forced to shut down. There were a few exceptions, such as for those companies proving their business as 
crucial to some of the SEA, but these exceptions do not substantially limit the main separation of the EA into 
two groups. Data collection is based on the NACE Rev.2 classification at a three-digit level40.
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